Porous, Ventricular Extracellular Matrix-Derived Foams as a Platform for Cardiac Cell Culture

نویسندگان

  • Valerio Russo
  • Ehsan Omidi
  • Abbas Samani
  • Andrew Hamilton
  • Lauren E. Flynn
چکیده

To more closely mimic the native cellular microenvironment, 3D scaffolds derived from the extracellular matrix (ECM) are being developed as alternatives to conventional 2D culture systems. In the present study, we established methods to fabricate nonchemically cross-linked 3D porous foams derived entirely from decellularized porcine left ventricle (DLV) for use as an in vitro cardiac cell culture platform. Furthermore, we explored the effects of physically preprocessing the DLV through mechanical mincing versus cryomilling, as well as varying the ECM concentration on the structure, composition, and physical properties of the foams. Our results indicate that the less highly processed minced foams had a more cohesive and complex network of ECM components, enhanced mechanical properties, and improved stability under simulated culturing conditions. To validate the DLV foams, a proof-of-concept study was conducted to explore the early cardiomyogenic differentiation of pericardial fat adipose-derived stem/stromal cells (pfASCs) on the minced DLV foams relative to purified collagen I gel controls. Differentiation was induced using a modified cardiomyogenic medium (MCM) or through stimulation with 5-azacytidine (5-aza), and cardiomyocyte marker expression was characterized by immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction. Our results indicate that early markers of cardiomyogenic differentiation were significantly enhanced on the DLV foams cultured in MCM, suggesting a synergistic effect of the cardiac ECM-derived scaffolds and the culture medium on the induction of pfASC differentiation. Furthermore, in analyzing the response in the noninduced control groups, the foams were observed to provide a mildly inductive microenvironment for pfASC cardiomyogenesis, supporting the rationale for using tissue-specific ECM as a substrate for cardiac cell culture applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Cardio Gel and Matrigel on the Ultrastructure of Cardiomyocytes Derived From Mouse Embryonic Stem Cells

Purpose: To investigate the effect of cardiogel and matrigel on the ultrastructure of embryonic stem cell-derived cardiomyocytes. ECM: Extracellular Matrix derived from cardiac fibroblasts (cardiogel), commercial extracellular matrix (matrigel) and control group (without ECM) were cultured for up to 21 days. Ultrastructural properties of cardiomyocytes were evaluated by transmitting electron mi...

متن کامل

Cardiogel as an Instructive Microenvironment for in vitro Differentiation of Bone Marrow- Derived Mesenchymal Stem Cells into Cardiomyocytes

Background: Stem cell therapy has been developed as an effective treatment method for the heart failure. Also, extracellular matrix has shown the positive effects in stem cell differentiation and myocardial tissue organization. Cardiogel is a native cardiac extracellular matrix (ECM) derived from cardiac fibroblasts. In the present study the role of cardiogel is examin...

متن کامل

Liquid crystal elastomer foams with elastic properties specifically engineered as biodegradable brain tissue scaffolds.

Tissue regeneration requires 3-dimensional (3D) smart materials as scaffolds to promote transport of nutrients. To mimic mechanical properties of extracellular matrices, biocompatible polymers have been widely studied and a diverse range of 3D scaffolds have been produced. We propose the use of responsive polymeric materials to create dynamic substrates for cell culture, which goes beyond desig...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015